Poster No:
2105
Submission Type:
Abstract Submission
Authors:
Samuel Krimmel1, Evan Gordon2, Nico Dosenbach2
Institutions:
1Washington University in St. Louis, St. louis, MO, 2Washington University, St. Louis, MO
First Author:
Co-Author(s):
Introduction:
The salience network plays a crucial role in neural processes related to reward, motivated behavior, attention, and social cognition (Menon & Uddin, 2010; Seeley, 2019), and contains representations in the ventral anterior insula and anterior cingulate cortex (Seeley, 2019). However, the extent to which the entire salience network is uniformly engaged in these processes remains uncertain, prompting an exploration of potential specialized sub-divisions within the network.
Methods:
This study investigates discrete functional divisions within the salience network using resting-state functional connectivity (RSFC) in highly sampled individuals (precision functional mapping - PFM; n=20 (Gordon et al., 2017)) and large group-averaged datasets totaling approximately 45,000 participants from the Human Connectome Project (Glasser et al., 2016), Adolescent Brain Cognitive Development (Casey et al., 2018), and UK Biobank (Miller et al., 2016). Employing data-driven methods, we identified individual and data set-specific large-scale canonical networks.
Results:
Comparing the salience network in group-averaged versus PFM, we observed that PFM identified salience network representation in the posterior cingulate and parietal cortex, extending beyond the canonical salience network. Further analysis revealed a consistent bipartite division in 80% of participants. The first subdivision, termed the core division, aligned with the canonical salience network, with representations in the anterior cingulate and ventral anterior insular cortex. The second, smaller division, termed the posterior division, was predominantly localized to the posterior cingulate and posterior parietal cortex. Notably, the core division demonstrated stronger correlation with the default-mode network and memory-related subnetworks (Gilmore et al., 2021), while the posterior division consistently correlated with the frontoparietal network, a key player in cognitive control and flexibility (Cole et al., 2013; Marek & Dosenbach, 2018). We created binary masks based on these two PFM identified subnetworks and used them as seeds in group-averaged RSFC, finding reciprocal connectivity between the core and posterior divisions.
Conclusions:
These findings suggest an expanded scope for the salience network, encompassing not only the ventral anterior insula and anterior cingulate cortex but also the posterior cingulate and posterior parietal cortex. The connection between the posterior division and the frontoparietal network might provide a mechanism for motivated behaviors to influence goal-directed cognitive processes.
Higher Cognitive Functions:
Executive Function, Cognitive Control and Decision Making 2
Learning and Memory:
Working Memory
Modeling and Analysis Methods:
Connectivity (eg. functional, effective, structural)
Neuroanatomy, Physiology, Metabolism and Neurotransmission:
Anatomy and Functional Systems 1
Perception, Attention and Motor Behavior:
Attention: Visual
Keywords:
Addictions
Cognition
Dopamine
FUNCTIONAL MRI
1|2Indicates the priority used for review
Provide references using author date format
Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., & Garavan, H. (2018). The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43–54.
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 1348–1355.
Gilmore, A. W., Nelson, S. M., & McDermott, K. B. (2021). Precision functional mapping of human memory systems. Current Opinion in Behavioral Sciences, 40, 52–57.
Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., & Jenkinson, M. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178.
Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., Ortega, M., Hoyt-Drazen, C., Gratton, C., & Sun, H. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791-807. e7.
Gordon, E. M., Laumann, T. O., Marek, S., Raut, R. V., Gratton, C., Newbold, D. J., Greene, D. J., Coalson, R. S., Snyder, A. Z., & Schlaggar, B. L. (2020). Default-mode network streams for coupling to language and control systems. Proceedings of the National Academy of Sciences, 117(29), 17308–17319.
Marek, S., & Dosenbach, N. U. (2018). The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133–140.
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214(5–6), 655–667.
Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., Bartsch, A. J., Jbabdi, S., Sotiropoulos, S. N., & Andersson, J. L. (2016). Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature Neuroscience, 19(11), 1523–1536.
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447.
Seeley, W. W. (2019). The salience network: A neural system for perceiving and responding to homeostatic demands. Journal of Neuroscience, 39(50), 9878–9882.