Poster No:
872
Submission Type:
Abstract Submission
Authors:
Gerson Robles Rodríguez1, Diego Ramírez Gónzalez1, Talía Román López1, Ian Espinosa Méndez1,2, Maria Guadalupe Garcia-Gomar3, César Domínguez Frausto1, Alejandra Ruiz Contreras4, Alejandra Medina Rivera5, Miguel Renteria6, Sarael Alcauter1
Institutions:
1Instituto de Neurobiología, Universidad Nacional Autónoma de México., Querétaro, México., 2Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México., Querétaro, México., 3Harvard Medical School, Boston, MA, 4Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, México., 5Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de, Querétaro, México, 6QIMR Berghofer Medical Research Institute, Brisbane, AK
First Author:
Co-Author(s):
Diego Ramírez Gónzalez
Instituto de Neurobiología, Universidad Nacional Autónoma de México.
Querétaro, México.
Talía Román López
Instituto de Neurobiología, Universidad Nacional Autónoma de México.
Querétaro, México.
Ian Espinosa Méndez
Instituto de Neurobiología, Universidad Nacional Autónoma de México.|Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México.
Querétaro, México.|Querétaro, México.
Alejandra Medina Rivera
Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de
Querétaro, México
Sarael Alcauter
Instituto de Neurobiología, Universidad Nacional Autónoma de México.
Querétaro, México.
Introduction:
The auditory cortex is situated in the temporal lobe, specifically within Heschl's gyrus (HG). The morphology of the HG exhibits high variability among hemispheres and individuals. Anatomical variations include both unique and duplicated HG. Duplicates are classified as a HG with an intermediate sulcus dividing half of the gyrus (Common Steam Duplication), and complete duplications where two gyri are formed (Complete Posterior Duplication; Moerel et al., 2014). These variations have been linked to diverse abilities, including musical and linguistic skills, cognition, and conditions such as schizophrenia and bipolar disorder (Takahashi et al., 2021). However, little is known about the relevance of genetic factors in the shape of the HG. Heritability quantifies the proportion of the variance that is attributed to genetic factors, and can be estimated by twin studies, comparing the traits in monozygotic twins (MZ, 100% shared DNA) and dizygotic twins (DZ, 50% shared DNA). Heritability may vary among populations, particularly in genetically admixed populations like the Mexican population. This study aims to estimate the heritability of the HG morphology.
Methods:
High-resolution T1w images from 188 twins (124 MZ, 64 DZ) from the Mexican Twin Registry underwent preprocessing and parcellation using FreeSurfer's recon-all pipeline. Later, TASH, a toolbox that utilizes the output from FreeSurfer, was used to segment the HG in a detailed and automated manner, obtaining measurements of cortical thickness, surface area, and gray matter volume; subsequently, the MCAI toolbox was employed for the automated assessment of anatomical variations (Dalboni da Rocha et al., 2020; 2023). Heritability was assessed for the 3 morphological characteristics in both hemispheres using the ACE model, which estimates the proportion of variance attributable to additive genetic factors (A), common environmental (C) and non-shared environmental factors (E; Posthuma, 2009). Concordance rates (CR), which indicate the probability that both twins in a pair share a specific characteristic or condition (Mcgue, 1992), were evaluated for the anatomical variation assessment.
Results:
The ACE model showed that for thickness, the left HG exhibited a heritability (genetic influence, a²) of 0.56 and individual environmental influence (e²) at 0.43. The right HG showed a² at 0.47 and e² at 0.52. Regarding surface area, the left HG showed a² at 0.10, shared environment influence (c²) at 0.24, and e² at 0.65. For the right HG, a² was 0, c² was 0, and e² was 1. For volume, the left HG a² at 0.27, c² at 0.03, and e² at 0.69. The right HG exhibited a² at 0, c² at 0.24, and e² at 0.75.
Regarding CR, MZ twins had 27 concordant pairs and 35 discordant pairs, resulting in a CR of 0.5. DZ twins had 19 concordant pairs and 26 discordant pairs, yielding a CR of 0.6, indicating a greater environmental influence regarding the HG anatomical variations.
Conclusions:
Cortical thickness emerged as the most heritable feature, with non-shared environmental factors predominantly influencing surface area and volume-contrary to existing literature suggesting significant genetic influences on surface area (Schmitt et al., 2020). Regional variability in the heritability of cortical thickness within the temporal lobes (Rimol et al, 2010) may explain the high heritability observed in the specific area of the HG. Surface area and volume correlated with HG duplication patterns, contributing to the high levels of e² for these characteristics and for CR. The study suggests that non-shared environmental factors play a more significant role than genetic factors in explaining anatomical variations and morphological characteristics of the HG.
Genetics:
Genetics Other 1
Modeling and Analysis Methods:
Segmentation and Parcellation
Univariate Modeling
Novel Imaging Acquisition Methods:
Anatomical MRI 2
Perception, Attention and Motor Behavior:
Perception: Auditory/ Vestibular
Keywords:
MRI
Other - Heritability; Twin study; Auditory cortex; Heschl gyrus; Anatomical MRI
1|2Indicates the priority used for review
Provide references using author date format
Dalboni da Rocha, J. L., Kepinska, O., Schneider, P., Benner, J., Degano, G., Schneider, L., & Golestani, N. (2023). Multivariate Concavity Amplitude Index ( MCAI ) for characterizing Heschl ’ s gyrus shape. 272(September 2022). https://doi.org/10.1016/j.neuroimage.2023.120052
Dalboni da Rocha, J. L., Schneider, P., Benner, J., Santoro, R., Atanasova, T., Van De Ville, D., & Golestani, N. (2020). TASH: Toolbox for the Automated Segmentation of Heschl’s gyrus. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-60609-y
Moerel, M., De Martino, F., & Formisano, E. (2014). An anatomical and functional topography of human auditory cortical areas. Frontiers in Neuroscience, 8(8 JUL), 1–14. https://doi.org/10.3389/fnins.2014.00225
Neuschwander, P., Hänggi, J., Zekveld, A. A., & Meyer, M. (2019). Cortical thickness of left Heschl’s gyrus correlates with hearing acuity in adults – A surface-based morphometry study. Hearing Research, 384. https://doi.org/10.1016/j.heares.2019.107823
Posthuma, D. (2009). Handbook of Behvior Genetics (Y.-K. Kim (ed.); Vol. 01). Springer International Publishing. https://doi.org/https://doi.org/10.1007/978-0-387-76727-7_4
Rimol, L. M., Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Fischl, B., Franz, C. E., Hagler, D. J., Lyons, M. J., Neale, M. C., Pacheco, J., Perry, M. E., Schmitt, J. E., Grant, M. D., Seidman, L. J., Thermenos, H. W., Tsuang, M. T., Eisen, S. A., Kremen, W. S., & Dale, A. M. (2010). Cortical Thickness Is Influenced by Regionally Specific Genetic Factors. Biological Psychiatry, 67(5), 493–499. https://doi.org/10.1016/j.biopsych.2009.09.032
Schmitt, J. E., Raznahan, A., Liu, S., & Neale, M. C. (2020). The genetics of cortical myelination in young adults and its relationships to cerebral surface area, cortical thickness, and intelligence: A magnetic resonance imaging study of twins and families: Genetics of Cortical Myelination, Area, Thickness, and Int. NeuroImage, 206(May 2019), 116319. https://doi.org/10.1016/j.neuroimage.2019.116319
Takahashi, T., Sasabayashi, D., Takayanagi, Y., Furuichi, A., Kido, M., Nakamura, M., Pham, T. V., Kobayashi, H., Noguchi, K., & Suzuki, M. (2021). Altere